3.81 \(\int \sqrt {a+a \cos (c+d x)} (A+C \cos ^2(c+d x)) \sec ^4(c+d x) \, dx\)

Optimal. Leaf size=153 \[ \frac {a (5 A+8 C) \tan (c+d x)}{8 d \sqrt {a \cos (c+d x)+a}}+\frac {\sqrt {a} (5 A+8 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{8 d}+\frac {A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}+\frac {a A \tan (c+d x) \sec (c+d x)}{12 d \sqrt {a \cos (c+d x)+a}} \]

[Out]

1/8*(5*A+8*C)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d+1/8*a*(5*A+8*C)*tan(d*x+c)/d/(a+a*c
os(d*x+c))^(1/2)+1/12*a*A*sec(d*x+c)*tan(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)+1/3*A*sec(d*x+c)^2*(a+a*cos(d*x+c))^(
1/2)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3044, 2980, 2772, 2773, 206} \[ \frac {a (5 A+8 C) \tan (c+d x)}{8 d \sqrt {a \cos (c+d x)+a}}+\frac {\sqrt {a} (5 A+8 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{8 d}+\frac {A \tan (c+d x) \sec ^2(c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}+\frac {a A \tan (c+d x) \sec (c+d x)}{12 d \sqrt {a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

(Sqrt[a]*(5*A + 8*C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(8*d) + (a*(5*A + 8*C)*Tan[c +
d*x])/(8*d*Sqrt[a + a*Cos[c + d*x]]) + (a*A*Sec[c + d*x]*Tan[c + d*x])/(12*d*Sqrt[a + a*Cos[c + d*x]]) + (A*Sq
rt[a + a*Cos[c + d*x]]*Sec[c + d*x]^2*Tan[c + d*x])/(3*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2772

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[((b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]]), x]
+ Dist[((2*n + 3)*(b*c - a*d))/(2*b*(n + 1)*(c^2 - d^2)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n
 + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2980

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n
+ 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n + 1)
*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 3044

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n +
2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b
*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0
])

Rubi steps

\begin {align*} \int \sqrt {a+a \cos (c+d x)} \left (A+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx &=\frac {A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {\int \sqrt {a+a \cos (c+d x)} \left (\frac {a A}{2}+\frac {3}{2} a (A+2 C) \cos (c+d x)\right ) \sec ^3(c+d x) \, dx}{3 a}\\ &=\frac {a A \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{8} (5 A+8 C) \int \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \, dx\\ &=\frac {a (5 A+8 C) \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}+\frac {1}{16} (5 A+8 C) \int \sqrt {a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=\frac {a (5 A+8 C) \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}-\frac {(a (5 A+8 C)) \operatorname {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}\\ &=\frac {\sqrt {a} (5 A+8 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{8 d}+\frac {a (5 A+8 C) \tan (c+d x)}{8 d \sqrt {a+a \cos (c+d x)}}+\frac {a A \sec (c+d x) \tan (c+d x)}{12 d \sqrt {a+a \cos (c+d x)}}+\frac {A \sqrt {a+a \cos (c+d x)} \sec ^2(c+d x) \tan (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.10, size = 115, normalized size = 0.75 \[ \frac {\sqrt {a (\cos (c+d x)+1)} \left (\tan \left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) (3 (5 A+8 C) \cos (2 (c+d x))+20 A \cos (c+d x)+31 A+24 C)+3 \sqrt {2} (5 A+8 C) \sec \left (\frac {1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{48 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]*(A + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*(3*Sqrt[2]*(5*A + 8*C)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Sec[(c + d*x)/2] + (31*A
+ 24*C + 20*A*Cos[c + d*x] + 3*(5*A + 8*C)*Cos[2*(c + d*x)])*Sec[c + d*x]^3*Tan[(c + d*x)/2]))/(48*d)

________________________________________________________________________________________

fricas [A]  time = 0.47, size = 191, normalized size = 1.25 \[ \frac {3 \, {\left ({\left (5 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{4} + {\left (5 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (3 \, {\left (5 \, A + 8 \, C\right )} \cos \left (d x + c\right )^{2} + 10 \, A \cos \left (d x + c\right ) + 8 \, A\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^4*(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/96*(3*((5*A + 8*C)*cos(d*x + c)^4 + (5*A + 8*C)*cos(d*x + c)^3)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x
+ c)^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x +
 c)^2)) + 4*(3*(5*A + 8*C)*cos(d*x + c)^2 + 10*A*cos(d*x + c) + 8*A)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d
*cos(d*x + c)^4 + d*cos(d*x + c)^3)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^4*(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 2.10, size = 1311, normalized size = 8.57 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^4*(a+a*cos(d*x+c))^(1/2),x)

[Out]

1/6*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*a*(5*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)
*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+5*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^
(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+8*C*ln(4/(2*cos(1/2*
d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))+8*C*ln(
-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c
)+2*a)))*sin(1/2*d*x+1/2*c)^6+12*(10*A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+16*C*2^(1/2)*(a*sin(1/2*
d*x+1/2*c)^2)^(1/2)*a^(1/2)+15*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a
^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+15*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x
+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+24*C*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2
)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+24*C*ln(-4/(-2*cos(1/2*d*x+1/2*c
)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)*sin(1/2*d*x+1
/2*c)^4-2*(80*A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+96*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(
1/2)+45*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/
2*d*x+1/2*c)+2*a))*a+45*A*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2
)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+72*C*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)
^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+72*C*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*
sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)*sin(1/2*d*x+1/2*c)^2+15*A*ln(-4/(-2*
cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))
*a+15*A*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*
d*x+1/2*c)+2*a))*a+66*A*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+24*C*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/
2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+24*C*ln(4/(2*cos(1/2*
d*x+1/2*c)+2^(1/2))*(2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+48*C*
2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^(1/2)/(2*cos(1/2*d*x+1/2*c)-2^(1/2))^3/(2*cos(1/2*d*x+1/2*c)
+2^(1/2))^3/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

________________________________________________________________________________________

maxima [B]  time = 0.89, size = 3088, normalized size = 20.18 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^4*(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/96*((120*(sin(6*d*x + 6*c) + 3*sin(4*d*x + 4*c) + 3*sin(2*d*x + 2*c))*cos(13/2*d*x + 13/2*c) - 8*(15*sin(11
/2*d*x + 11/2*c) + 50*sin(9/2*d*x + 9/2*c) + 42*sin(7/2*d*x + 7/2*c) + 3*sin(5/2*d*x + 5/2*c) - 5*sin(3/2*d*x
+ 3/2*c))*cos(6*d*x + 6*c) + 360*(sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*cos(11/2*d*x + 11/2*c) + 1200*(sin(4*d*
x + 4*c) + sin(2*d*x + 2*c))*cos(9/2*d*x + 9/2*c) - 24*(42*sin(7/2*d*x + 7/2*c) + 3*sin(5/2*d*x + 5/2*c) - 5*s
in(3/2*d*x + 3/2*c))*cos(4*d*x + 4*c) - 15*(sqrt(2)*cos(6*d*x + 6*c)^2 + 9*sqrt(2)*cos(4*d*x + 4*c)^2 + 9*sqrt
(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(6*d*x + 6*c)^2 + 9*sqrt(2)*sin(4*d*x + 4*c)^2 + 18*sqrt(2)*sin(4*d*x + 4*
c)*sin(2*d*x + 2*c) + 9*sqrt(2)*sin(2*d*x + 2*c)^2 + 2*(3*sqrt(2)*cos(4*d*x + 4*c) + 3*sqrt(2)*cos(2*d*x + 2*c
) + sqrt(2))*cos(6*d*x + 6*c) + 6*(3*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(4*d*x + 4*c) + 6*(sqrt(2)*sin(4*d
*x + 4*c) + sqrt(2)*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + 6*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/2*a
rctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*a
rctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + 15*(sqrt(2
)*cos(6*d*x + 6*c)^2 + 9*sqrt(2)*cos(4*d*x + 4*c)^2 + 9*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(6*d*x + 6*c)^
2 + 9*sqrt(2)*sin(4*d*x + 4*c)^2 + 18*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*sqrt(2)*sin(2*d*x + 2*c)^2
 + 2*(3*sqrt(2)*cos(4*d*x + 4*c) + 3*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(6*d*x + 6*c) + 6*(3*sqrt(2)*cos(2
*d*x + 2*c) + sqrt(2))*cos(4*d*x + 4*c) + 6*(sqrt(2)*sin(4*d*x + 4*c) + sqrt(2)*sin(2*d*x + 2*c))*sin(6*d*x +
6*c) + 6*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*
arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*si
n(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 15*(sqrt(2)*cos(6*d*x + 6*c)^2 + 9*sqrt(2)*cos(4*d*x + 4*c)^
2 + 9*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(6*d*x + 6*c)^2 + 9*sqrt(2)*sin(4*d*x + 4*c)^2 + 18*sqrt(2)*sin(
4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*sqrt(2)*sin(2*d*x + 2*c)^2 + 2*(3*sqrt(2)*cos(4*d*x + 4*c) + 3*sqrt(2)*cos(2
*d*x + 2*c) + sqrt(2))*cos(6*d*x + 6*c) + 6*(3*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(4*d*x + 4*c) + 6*(sqrt(
2)*sin(4*d*x + 4*c) + sqrt(2)*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + 6*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2
*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)
*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) +
15*(sqrt(2)*cos(6*d*x + 6*c)^2 + 9*sqrt(2)*cos(4*d*x + 4*c)^2 + 9*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(6*d
*x + 6*c)^2 + 9*sqrt(2)*sin(4*d*x + 4*c)^2 + 18*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*sqrt(2)*sin(2*d*
x + 2*c)^2 + 2*(3*sqrt(2)*cos(4*d*x + 4*c) + 3*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(6*d*x + 6*c) + 6*(3*sqr
t(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(4*d*x + 4*c) + 6*(sqrt(2)*sin(4*d*x + 4*c) + sqrt(2)*sin(2*d*x + 2*c))*si
n(6*d*x + 6*c) + 6*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 +
2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*
sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - 120*(cos(6*d*x + 6*c) + 3*cos(4*d*x + 4*c) + 3*cos
(2*d*x + 2*c) + 1)*sin(13/2*d*x + 13/2*c) + 8*(15*cos(11/2*d*x + 11/2*c) + 50*cos(9/2*d*x + 9/2*c) + 42*cos(7/
2*d*x + 7/2*c) + 3*cos(5/2*d*x + 5/2*c) - 5*cos(3/2*d*x + 3/2*c))*sin(6*d*x + 6*c) - 120*(3*cos(4*d*x + 4*c) +
 3*cos(2*d*x + 2*c) + 1)*sin(11/2*d*x + 11/2*c) - 400*(3*cos(4*d*x + 4*c) + 3*cos(2*d*x + 2*c) + 1)*sin(9/2*d*
x + 9/2*c) + 24*(42*cos(7/2*d*x + 7/2*c) + 3*cos(5/2*d*x + 5/2*c) - 5*cos(3/2*d*x + 3/2*c))*sin(4*d*x + 4*c) -
 336*(3*cos(2*d*x + 2*c) + 1)*sin(7/2*d*x + 7/2*c) - 24*(3*cos(2*d*x + 2*c) + 1)*sin(5/2*d*x + 5/2*c) + 1008*c
os(7/2*d*x + 7/2*c)*sin(2*d*x + 2*c) + 72*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) - 120*cos(3/2*d*x + 3/2*c)*sin
(2*d*x + 2*c) + 120*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) + 120*(2*(3*cos(4*d*x + 4*c) + 3*cos(2*d*x + 2*c) +
1)*cos(6*d*x + 6*c) + cos(6*d*x + 6*c)^2 + 6*(3*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + 9*cos(4*d*x + 4*c)^2
+ 9*cos(2*d*x + 2*c)^2 + 6*(sin(4*d*x + 4*c) + sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + sin(6*d*x + 6*c)^2 + 9*sin
(4*d*x + 4*c)^2 + 18*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*sin(2*d*x + 2*c)^2 + 6*cos(2*d*x + 2*c) + 1)*sin(1/
2*arctan2(sin(d*x + c), cos(d*x + c))) + 40*sin(3/2*d*x + 3/2*c))*A*sqrt(a)/(sqrt(2)*cos(6*d*x + 6*c)^2 + 9*sq
rt(2)*cos(4*d*x + 4*c)^2 + 9*sqrt(2)*cos(2*d*x + 2*c)^2 + sqrt(2)*sin(6*d*x + 6*c)^2 + 9*sqrt(2)*sin(4*d*x + 4
*c)^2 + 18*sqrt(2)*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*sqrt(2)*sin(2*d*x + 2*c)^2 + 2*(3*sqrt(2)*cos(4*d*x +
 4*c) + 3*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(6*d*x + 6*c) + 6*(3*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*cos(
4*d*x + 4*c) + 6*(sqrt(2)*sin(4*d*x + 4*c) + sqrt(2)*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + 6*sqrt(2)*cos(2*d*x
+ 2*c) + sqrt(2)) + 24*(4*sqrt(2)*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) + 4*sqrt(2)*cos(3/2*d*x + 3/2*c)*sin(2
*d*x + 2*c) - 4*sqrt(2)*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) - (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*c
os(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), co
s(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*sqrt(2)*sin(1/2*arctan2(sin(d*x +
c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arc
tan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sqrt(2)*cos(1/2*arc
tan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) - (cos(2*d*x +
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 +
2*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2*
sqrt(2)*sin(1/2*arctan2(sin(d*x + c), cos(d*x + c))) + 2) + (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2
*d*x + 2*c) + 1)*log(2*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c)))^2 + 2*sin(1/2*arctan2(sin(d*x + c), cos(d*
x + c)))^2 - 2*sqrt(2)*cos(1/2*arctan2(sin(d*x + c), cos(d*x + c))) - 2*sqrt(2)*sin(1/2*arctan2(sin(d*x + c),
cos(d*x + c))) + 2) - 4*(sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(5/2*d*x + 5/2*c) + 4*(sqrt(2)*cos(2*d*x + 2*c
)^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 2*sqrt(2)*cos(2*d*x + 2*c) + sqrt(2))*sin(1/2*arctan2(sin(d*x + c), cos(d*x
 + c))) - 4*sqrt(2)*sin(3/2*d*x + 3/2*c))*C*sqrt(a)/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2
*c) + 1))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^4,x)

[Out]

int(((A + C*cos(c + d*x)^2)*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^4, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**4*(a+a*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________